<本講座の特徴>
本講義では、初学者にも分かりやすいよう、統計的機械学習理論を学ぶ上で重要となるトピックは網羅的に解説し、理論の基礎から全体像、そして、応用に対する考え方に至るまでを習得できるようにします。また、初学者だけに限らず、統計的機械学習理論を多少聞きかじったけれども、しっかりと基礎部分を把握しておきたいという方にもピッタリな内容となっています。
内容の性質上、数式が多数出現しますが、必要に応じて補足をしていくので特殊な専門知識は必要ありません。大学初年度レベルの微積分、線形代数、確率統計の知識があるとより楽しめると思います。
<習得知識>
✔ 統計的機械学習理論の基礎理解と概要把握から、実装に至るまでの一通りの知識を習得できる。
✔ データサイエンスに関する包括的な知識を習得できる。
✔ 新しい機械学習の可能性を知ることができる。
<講義概要>
本講座では、(確率的)グラフィカルモデルと呼ばれる統計的機械学習モデルをテーマとして扱います。グラフィカルモデルの利点は、なんと言っても、これ一つで多くのデータサイエンスができるようになるという点です。データサイエンスの技術が学術界に留まらず、広く社会に大きな影響を与え始めています。データサイエンスの中の主要な柱はデータマニング技術(つまり、データ分析技術)と、AI技術の2つであり、これらの技術はこれからも社会変革をもたらしていくと予想されます。
よりエンジニアリングに近い位置での(つまり、設計思想が色濃く反映されている方法での)問題解決法があれば理想です。その意味では伝統的なエンジニアリングは素晴らしいものです。人の設計思想を基礎として、そこにデータサイエンスの流儀をプラスアルファで取り込めれば、今の潮流とは一風異なる方向性での未来が可能となるでしょう。本セミナーで扱うテーマは、そのような新たな方向性の実現に役立つポテンシャルをもった理論なのです。